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Abstract. This paper describes solutions to the Smoluchowski coagulation equations with power-law kernels in
both constant-mass and constant-monomer cases. Exact solutions are obtained in special cases by a generating
function approach. For more general kernels, the large-time behaviour is obtained by use of matched asymptotics.
Numerical results are also given, which confirm the asymptotic analysis.
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1. Introduction

The discrete coagulation-fragmentation equations were first derived, and for certain cases
solved, by von Smoluchowski [1] in 1916. They are an infinite set of chemical rate equations
for the cluster-size distribution; (z), i.e. a mathematical model for the dynamics of cluster
growth.

If c;(r) >0, j =1,2,... denotes the number of clusters per unit volume consisting of
particles (-clusters), the discrete coagulation-fragmentation equations are, when no particles
are introduced to or removed from the system,

o
é1=— Y (arackcr — bacisn),
k=1
15
C"j = E Z (ak’j,kaCj,k — bk)j,ij) (11)
k=1

o
_Z(ak)jcij_bk)jck+j), j:2,3,

k=1
where the values of the; . = a; ; are determined by the bonding behaviour of a cluster of
size j with one of sizek and the values of the; , = by ; by the fragmentation rate of a cluster
of size j + k into one of sizej and one of sizé&. Such models are of interest in a number
of fields, such as aerosols, red blood cells [2], polymerisation and the clustering of colloidal
particles [3].

In this paper we shall look at coagulating systems in which no fragmentation occurs, so

thatb; , = 0. The coagulation kernel we shall mainly use is

ajr =3 (j°kP + jPk7), (1.2)
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58 S.C. Davies et al.

whereo andj are nonnegative constants. Such kernels apply, for example, in situations where
bond linking and interactions between large clusters are the dominant mechanisms, when
a = B =1—1/d andd is the dimension of the cluster [4, 5]. Differemt, have been looked

atin [5] and [3]. We thus study

1= —% (Ma(t)—i-Mﬂ(Z)) C1, (13)
13
& =7 D (G =Rk + k(= k)P) cxejx
k=1

M)+ M) %) c; =2 (1.4)

where we define

My(t) =) kPer(t). (1.5)

k=1

Mg therefore denotes the total number of clusters #hdhe total number of particles within
these clusters. We shall consider two sets of boundary and initial data, which we term the
‘constant mass’ and the ‘constant monomer’ cases.

The constant-mass case arises when the full system (1.3), (1.4) holds. We define the
mass by

0= chk = Ml. (16)
k=1
Introducing
k 00
=0,  L=Y Y jajeac, k=12.., (1.7)
j=1 I=k+1—j

we may readily show for the coagulation equations with general keanelthat

d(kck)
= Ji_1— Ji, 1.8
dr k-1 — Ji (1.8)
so, formally,
do .
— =— | Jy. 1.9
dr Ninoo N ( )

Hence mass is conserved when the right-hand side of (1.8) is zero. However, we shall term
even the cases when it is nonzero as ‘constant mass’; in such circumstances mass is lost to
a cluster of infinite size (the ‘superparticle’ [6—7] or ‘gel-particle’) in a process known as
gelation. The growth rate of the gel can be determined from (1.8) and the total mass in the
finite size clusters together with the gel is conserved. We investigate below circumstances
under which gelation occurs.
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Self-similar behaviour in the coagulation equation$9

Commonly adopted initial conditions for the constant mass case correspond to monod-
isperse data, whereby the system contains only free monomess @t so that

at r =0, =1, ¢ =0 Vr>2 (1.10)

without loss of generality we thus take= 1 atr = 0. The monomers then react with each
other to form larger particles as time increases.

For the constant monomer case [8-9] we keep the number of free monomers at a specific
concentration for all time by continually introducing monomers into the system, so we replace
(2.3) by¢, = 0 and taker; = 1, without loss of generality; the simplest initial conditions are
again given by (1.10). The mass will not be constant in this case due to the input of monomers,
so in particular gelation need not coincide with a decreagé;in

Ball and Carr [4] have considered issues of existence, uniqueness and density conservation
for solutions to the coagulation-fragmentation equations, extending proofs developed for the
Becker—Ddoring equations (the special case of (1.1) in whigh= o;8;1 + ax 1 andb; ; =
Bj+181 + Pr+16k1) to more general systems. Both Leyvraz and Tschudi [10] and Hendriks
et al. [5] examine purely coagulating systems, with kerngls = (Aj + B)(Ak + B) and
ajr = (jk)*, respectively. For coagulation equations with reaction coefficients= (jk)*
in which gelation occurs, after gelation the appropreteatzfor large j is that

cj(t)y ~K()j™° asj — 4+oo for t >t,, (1.12)

for some constant and someX (¢), wheret, is the gelation time. Leyvraz and Tschudi [11]
and Ziff et al. [14] discuss the relationship betweemndo for the caser = 8, both showing
thato = 3 + .

We note that the discrete system (1.4) has the continuous symmetries

cjf* = lCj, M; =uM,, j*=j, kK'=k, *=t/u, (1.12)
cj‘ =cj, M; =M, j'=j K=k t'=t+1y (1.13)

these in fact exist for general coagulation kernels. Equation (1.12) implies the existence of the
separable similarity reduction

1

cj)=~1j (1.14)
while steady states

ci(t) =g, (1.15)
correspond to (1.13). As we shall see, both of these similarity reductions play a crucial role
in describing the large time behaviour (the generalisation of (1.14) given(by = f(k +
alnt)/t for constantz does not play a role here). Much of the asymptotic behaviour, however,
while of self-similar form, does not correspond to an exact similarity reduction of (1.4). We

also note a discrete symmetry of (1.4J.(11]), namely

M, =n"M, j"=nj, k*=nk, t* =1t/n"th, (1.16)
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and

. if j* is a multiple ofn,
t = { G nJ pie otr (1.17)

J 0 otherwise

wheren is a positive integer.

In Section 2 of this paper we give explicit solutions to the special case$s = 0, =1
with 8 = 0 anda = g = 1 for the constant-mass case and investigate the behaviour of
the constant-monomer case with the same values afid 8. Other values ofr and 8 are
considered in Section 3 for the constant mass case and in Section 4 for the constant-monomer
case. Both these sections include numerical solutions of the system together with a detailed
asymptotic analysis. The paper concludes with a discussion of our results.

There is substantial literature making use of scaling and similarity ideas in the analysis of
the coagulation equations (in addition to the references already noted, see [12] and [13], for
example) and we shall not attempt to review it here. Many of the results for constant mass
derived below have appeared before, largely in the speciakcasg, but even in these cases
our approach is somewhat different and we believe the results are in general more complete.

2. Exact solutions

For certain values ok andg (hamelya, 8 = 0, 1) the coagulation equations can be solved
analytically in the constant-mass case. From our outline of these solutions it can be seen that
fora = 8 = 0 anda = 1 with 8 = 0 the system does not gelate, but o= 8 = 1 mass

is ultimately lost to the gel-particle, the system gelating within finite time. For the constant
monomer case it can again be seen that with the first two sets of coagulation kernels the system
does not gelate but for the third it does.

2.1. CONSTANT MASS

In this case the coagulation equations and initial conditions are defined by (1.3)—(1.4) and
(1.10), so that

Mo(0) = M1(0) = 1. (2.1)

For the cases indicated above the system can be solved explicitly, as noted by Leyvraz and
Tschudi [10] who solve fow = 8 = 0 anda = 8 = 1. A more concise way to obtain these
exact solutions is to study the generating function

CG. 1) =Y clt) exp(—kz), (2.2)

k=1

for each integrable kernel, so that in particular

aC
Z
From (1.10) we thus have
C(z,0) = exp(—2). (2.4)
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Self-similar behaviour in the coagulation equation$1

211 Casella=8=0
Fora = 8 = 0, substituting the generating function in Equation (1.1) yields

oC
% 1%~ mocen), @3)

whereM, = C(0, 1), the zeroth moment, can be determined by settirg0 in (2.5) to give
Mgy = —%Mg, with solution My = 2/(¢ + 2). Solving the Bernoulli equation (2.5), subject to
(2.4), we have

4
C = , 2.6
@0 = T D%exmo) — 1+ 2 (2.:6)
which can be expanded to yield the solution
441

No gelation occurs in this case, witf; = 1 holding for all time. The large-time behaviour
of (2.7) is of the form

cj~t2g(j/t) ast— oo with j = 0(), (2.8)
with
gn) =4e?. (2.9)

212 Casellla=1 =0
The patrtial differential equation for the generating function is now

ac  , 9C ,dC L

— =—5C— 4+ 5—Mp(t) — 5M1(t)C. 2.10

9t 2 3z + 2 3z o(?) 2 1(1) ( )
Assuming no gelation occurs, we ha¥g = 1 for all time. The zeroth moment can then be
found by setting; = 0 in (2.10), which gives/y(t) = €7/, so

aC ac

—=1(e"?-0c)—-1c. 2.11
ot 2 (e C) 0z 2C ( )

We can solve this, subject to (2.4), in implicit form using the method of characteristics to give
e =C(znexp(l+ir—e'?)exp((€/?—1)C(z,1). (2.12)

If we use Lagrange’s expansion [15, Equations 3.6.6—3.6.7] the concentrations can then be
shown to be

cj(t) = 71!].;1 e'/Z(1- e*’/z)"’_1 exp(—j (1—e7?)), (2.13)

confirming our assumption of no gelation.
The large time behaviour can easily be extracted from (2.13) as

)2

cj~ e’/e’? ast— oo with j = 0(1), (2.14)

J!
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and, from Stirling’s formula, as

cj~€e%g(j/d) ast—> oo with j =0(), (2.15)
with
g(n) = "%/ (2mn*)Y2, (2.16)

2.13. Casellba=p=1
Fora = 8 = 1 we have

aC 1 /0C\? aC

— == My(t)—. 2.17

ot 2(8z>+ 105 @11
The substitutiont = —9C/dz simplifies (2.17) to an equation of inviscid Burgers type

ou ou

— = (My(t) —u)—. 2.18

Py (M1(t) — u) 92 ( )
Solving by the method of characteristics, subjeai te e ¢ atr = 0, we have

t
z=tu—logu — / Mq(t")dt’, (2.19)
0

so that

ou u

= ) 2.20

0z 1—1tu ( )

It remains to determind/,(¢). Sinceu(0, 1) = My(¢), it follows from (2.18) that the two
possibilities are the following.

(i) M, = 0, this being the pre-gelation cases0r < t,. We then haver (0, 1) = M, =1,
with z = 0 being a characteristic of (2.18), up until the gelation time,. Thus

z=tu—logu —t (2.21)
and (2.10), which implies that

My (t) = % for r <1, (2.22)

blows up atz = 0 when ¢= 1, from which we deduce that = 1. Fort > 1, u(z, t) as given

by (2.21) is multi-valued i > 0, implying the presence of a shock in the solution to (2.18).
(i) (0u/0z)(0, 1) is unbounded, indicating the post-gelation case, 7, = 1. After gela-

tion, we determiné/; by requiring that the point at whichu /37 is unbounded remain fixed

atz = 0. This corresponds to

Mo(t) = —‘;—”(0, ) (2.23)
Z

being unbounded. Sinddy andM;, in particular, remain bounded after gelation, singularities
in z > 0 are not permissible. It thus follows from (2.20) that fos 1

1/t =u(0,t) = My(t). (2.24)
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Self-similar behaviour in the coagulation equation$3
Equation (2.19) then gives

uexp((l—u)t), <1,

exp(—2) = { utexp(l —ur), t>1, (2.25)

from which we can extrack(z, t) using Lagrange’s expansion [15, Equations 3.6.6—-3.6.7],
giving

kklkl

Z exp(—k(r +2)), <1,
u(z, 1) = ; (2.26)
2l le p(— )exp(—kz), t>1,

' M

so that
ij=34j—1p— ]t
oo (<t
j— ] - :
cj(t) = . (2.27)
G-nie’ 7
The post-gelation behaviour is thus exactly of the separable form [10],
1
with
jj—3 e—j
=L . (2.29)
=G

We note from (2.17) that

dM,
TO — —im? (2.30)
so that
1—31, t<1,
Mo=1{ 1 (2.31)
Z! =

By applying Stirling’s formula to (2.27), the largebehaviour can be written in the instructive
form

@ Jj(—1-log(»))

- pregel t<1,
5/2¢ /o7
asj—> 400 c;t~{ 7/ ! (2.32)

———— post-ge)] r>1
j5/2t\/Z P 9
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2.2. CONSTANT MONOMER

While closed-form solutions are scarcer than in the constant mass case, valuable information
can still be deduced by generating-function methods. We again adopt the initial conditions
(1.10).

221 Casel.a=8=0
Again introducing (2.2), witle; = 1, we obtain

dC _
- = 1C? — (C - e%)My, (2.33)

whereMy = C(0, r) can be found by setting = 0 in (2.33), givingMy = 2/(1 + € '), and
hence
aC 102 2 2e*

ac _ c , 2.34
ar 2 1+et +1+e*f ( )

subject to (2.4). This is a Riccati equation which we can in the usual way transform to a

linear second-order equation by writig(z, 1) = —2(dw/dt)/w. The further substitution
T = —ex(t) leads to
92 )
-0 v a-30Y _eww=no (2.35)
at? ot

which is a hypergeometric equation. It does not seem possible to write the solution in a useful
form; the behaviour as— oo is readily deduced as

w~ W) (=) VT ast — —oo, (2.36)

for someW(z), which corresponds to the steady state solution(fdicf. Section 4.1). The
large time behaviour is discussed in more detail in Appendix A.

22.2. Casellla=1 =0
In this case the generating functidi(z, r) satisfies

8_C=_;C3_C+;(
z 2

9C
e+ E) Mo+ 5 (e = C) My. (2.37)

This system does not gelate and two simultaneous equations for the zeroth and first moments
can be gained by setting= 0 in Equation (2.37) and its derivative with respect tmamely

dMy

e 5 (Mo + My — MoMy), (2.38)
dm

The phase-plane for these equations is shown in Figure 1. From this it can be seen that mass
(M,) is monotonically increasing, but the number of clustédg)(reaches a maximum and
then decreases, due to the average size of the clusters getting larger as time increases.
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Figure 1. The phase portrait of the zeroth and first moments.

Clearly (2.38) impliesMy — 1 ast — oo and then (2.39) implies that the mass diverges
exponentially. To be more precise

Mo~ 1+€"?/A,

(2.40)
My~ A€/?—-1 ast— oo,
indicating that the number of clusters with aggregation humbers greater than unity decays
exponentially with time. The constamt depends on the initial data. In fact we can solve
(2.38) and (2.39) in closed form by introducig= M, + M; + M?/2, which satisfies

d¢>

=¢. (2.41)
In view of (2.3) we have
5
¢ = > e, (2.42)

from which it follows thatA = /5 when the initial data (1.10) holds. (2.42) can be used to
give a Riccati equation fa¥; which can be solved in terms of modified Bessel functions.
The large time behaviour of this case is remarkably rich in structure and has some note-

worthy features; it is outlined in Appendix B.
223. Casellla==1
Gelation does not occur in the preceding two cases, but does in the current one. The equation

aC 1/9C\? aC
o= e 4+ — | Myt 2.43
‘ 2<8Z) +( +8Z> 1) (2.43)

holds, from which it follows that\/; = € before gelation. By again substitutingz, r) =
—0aC/dz we thus obtain prior to gelation that

9 9
a_bt‘ = (¢ —u) a_z L (2.44)
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Figure 2. The second moment for the constant-monomer caseanith = 1.

We thus have along characteristics that

dz du .

o €, o = (2.45)
Further analytical progress with the full solution does not appear possible.

The gelation time can, however, be calculated. Differentiating (2.44) with respeetrtd
settingz = 0, we obtain

dM,

— < M2+, 2.46
dr 2+ (2.46)
which is again a Riccati equation. Substitutiig = — (dk /dr) /« andt = 2 €/? yields
. de
-— + = 2.47
tdrz + i + 16 =0, ( )

and, sincelM, = 1 atr = 0, we find that

12 Yo(2) — Y1(2)) J1(2€/%) — (Jo(2) — J1(2)) Y1(2€/?)
(Yo(2) — Y1(2)) Jo (2€/2) — (Jo(2) — J1(2)) Yo(2€/?)

which is plotted in Figure 2. The gelation time, at whikh becomes unbounded, is approx-

imately 0754. It follows from the steady-state solution of Section 4.1 (which gives the large

time behaviour) thal, — 2 ast — oo, a slight decrease in the mass of finite clusters

compared to its value at the gelation time.
Limited other information can also readily be deduced. For example, from (2.43) we have

dMO

dr
so thatMy = € + %(l — &) fort < t,. The other pre-gelation moments can be calculated
sequentially, as can the. We have

Mo(t) = e

(2.48)

=M, — IMZ, (2.49)

dv, 1 it n!
G = 22 i = MM (2:59)
j=
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Figure 3. Gelation behaviour in théx, 8) plane.

3. The constant-mass case

3.1. NUMERICAL RESULTS

3.1.1. Formulation
We shall now look at general (including noninteger) valuesxadnd g8, for which exact
solutions cannot be found. Solutions to the coagulation equations fall into four categories
depending on the value af and 8; without loss of generality we take > g throughout. For
values withe + 8 < 1 no gelation occurs, while far+ 8 > 1, « < 1 gelation occurs at some
finite time,7, > 0. Fora > 1 gelation occurs instantaneously = 0), and ifa — 8 > 1 no
solution exists, all of the mass being transferred into a gel (we term this ‘complete gelation’).
The situation is shown schematically in Figure 3 and the results given below indicate how the
various dividing lines are deduced (the identification of the borderline between finite time and
instantaneous gelation is beyond the scope of this paper, however); we shall not for the most
part discuss the borderline cases. Becauaadj are interchangeable Figure 3 is symmetric
abouta = 8.

A suite of Fortran 77 programs has been written to solve the various coagulation systems
described in this paper. NAG routines for stiff systems of ordinary differential equations were
used to solve a truncated form of the infinite system, namely

1 j-1 N—j
C"j = EZak)j,kckcj,k— Zak,jckcj for j =1...,N, (31)
k=1 k=1

where we typically takev = 200 (the first sum is absent whegn= 1 and the second when

j = N). The densityo = Z,’c"zl ke is thus conserved for all time and all choices of coeffi-
cientsa; ; and this is used as a test of accuracy of the programs. Various criteria for numeric-
ally identifying when gelation has occurred have been tested. The one most commonly used
here is that if more than 5% of the total mass is present in the particles of size between 195—
200 (for N = 200) by the final time step then gelation is said to have occurred. This approach
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Figure 4. Plot of logc; (¢) against log at timest = 0-1tot = 2, in steps of @, for the casex = g = 0-2 with
constant mass.

performs reasonably well, giving a value fQrof around 07 for« = g = 1 in the constant
monomer casecf. Section 2.2.3). Problems arise when a large percentage of the concentration
is found in clusters of size larger thafy 2, because the formulation (3.1) does not allow these
clusters to react together. If this is the case the numerical results can be misleading.

Looking more specifically now at the case= 8, we can see from Figure 3 that solutions
splitinto three groups. It has been shown [10] that solutions exist far Alit if o > % density
conservation breaks down after a finite time — the gelation timé « > 1 the gelation time
is zero,i.e. density is lost to the gel from the start. We therefore split the numerics for the
constant mass case into three ranges % % <o < 1landa > 1. Afourth case arises when
a — B < 1, that of complete gelation.

3.1.2. Results forr = B < 3

In this case it is known that no gelation occurs, the coagulation kernel growing too slowly for
large j to induce the formation of an infinite cluster. From the numerical solution it can be
seen that few large clusters are formed, with Figure 4 showing plots of the log of concentration
(cj) against the log of cluster sizg). There is no build-up of mass towards the right-hand
side of the graph, indicating the absence of gelation.

3.1.3. Resultsfog <a =<1

From the results of a numerical solution toe= 8 = 0.8 shown in Figure 5 it can be seen that
there is a build-up of larger clusters after a certain time period, indicating that gelation occurs
within finite time.

3.1.4. Resultsfox =8 > 1

We now turn to models where, , increases faster thajk; in applications [5], this corres-
ponds to the effective surface area of a cluster growing more rapidly than the volume as its
size increases.
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Figure 5. Plot of logc; () against log/ at timest = 0-1tor = 2, in steps of @, for the casex = g = 0-8 with
constant mass.

log of concentration

’18 Il Il Il Il Il
3 4
log of size of cluster

Figure 6. Plot of logc (¢) versus logj at timest = 0-1 tot = 2.0, in steps of @, for the caser = g = 2.5 with
constant mass.

In the numerical simulations far = 8 > 1 gelation has occurred by= 0-1. From the
results fore = 8 = 2.5 in Figure 6 it can be seen that even foe 0-1 there is a significant
build up of large clusters, suggesting that in the full system of equations density would not be
conserved. The behaviour to the right of the figure is an artifact of the feature of (3.1), noted
earlier, that clusters of siz§N are not permitted to combine by the truncated form of the
equations. It does nevertheless provide a clear indication of the presence of gelation.
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Figure 7. Plot of logc; (¢) against logj at timest = 0-1 tot = 2, in steps of a, for the caser = 2.5, = 1.0
with constant mass, showing the gel forming with larger particles than Figure 6.

3.1.5. Resultsfoxr — 8 < 1

This is the only regime that cannot be illustrated wite= 8. In this case no solution exists —

we conjecture that for the infinite system all of the mass coagulates into a gel. It is, however,
possible, to obtain numerical results to the truncated system (3.1). It can be seen from Figure 7
that a significant amount of mass is within the large clusters after just a few time steps. This
can be regarded as corresponding to instantaneous gelation of the majority of the mass in the
truncated system, cluster sizes being significantly larger than in the instantaneous gelation
regime of Section 3.1.5.

3.2. LARGE-TIME ASYMPTOTICS

If we consider concentrations with large j values, it is often appropriate to take the con-
tinuum limit of the coagulation equations, in which we repladey the continuous variable

x andk by y; the leading-order balance can then be written in a number of equivalent forms,
including

dc(x, 1) x/2
rram /0 c(y,Hla(y,x —y)e(x —y,t) —a(y, x)c(x, )] dy

—c(x,t)/ 2a(y,x)c(y,t) dy; (3.2
x/

as we shall see, the required solutions of (3.2) are typically singubara<d". Fora(x, y) =
2(x*y? + xPy*), Equation (3.2) possesses two rescaling invariants

¢’ = uc, x"=x, y =y, tf=t/u, (3.3

*F=c, x* = vx, y* = vy, t* =ty AL (3.4)
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Self-similar behaviour in the coagulation equationg1

as well as the translation invariant

*

c* =c, x*=x, =y, " =1+1. (3.5

(3.3) and (3.5) are inherited from symmetries of the discrete problem (1.4), but (3.4) is an
additional symmetry of the continuous approximation. In view of (3.3)—(3.5), Equation (3.2)
therefore has the families of similarity solutions

c=t"gm), n=x/t!, with p—(@+B+Dg=1 (3.6)

c=e @thDMomyy pn=x/e", (3.7)

wherep and are arbitrary constants.

We are now in a position to discuss the asymptotic behaviouraso. In the nongelating
casex + 8 < 1 this will comprise an ‘outer’ region, in which the leading order solution
is governed by (3.2), and an ‘inner’ regigh= 0O(1). In the gelating case only the latter
arises. The leading-order ‘outer’ solution in the nongelating cases is assumed to be a similarity
solution to (3.2) of the form (3.6). This solution cannot in general be constructed explicitly
and we shall concentrate on the large-time matching problem, which determines the values of
p andg. We thus need to determine the largbehaviour in the inner region and the small
behaviour in the outer region.

(i) Gelating regimeg +8 > 1,0 — 8 < 1.
Ast — oo, the uniformly valid large time solution is of the separable form

1
cj(t) ~ ?fj ast — +oo, (3.8)

for some constantg;, which can in principle be determined from (1.3)—(1.4). Some simple
properties of thef;, such as

YU +iNf =2 Y LY K R=2)f (3.9)
j=1

j=1 k=1 =1

are readily deduced from (1.3)—(1.4). In the gelating case, it follows from (1.9) that we require
Jy(@) — J(@) > 0asN — oo for some functionJ (z). The behaviour ag — +oo for

all + > ¢, can then be deduced from (1.7), as follows. Assuming (1.11) and successively
approximating the summations in (1.7) by integrals, as is appropriate in thelimito, we

find that

J(@) = kILrlgo <%K2(z‘)B(a +2—0,86+2—-0)

% 1 + 1 ka+/3+372(r
co—B—-1 o—-—a-1 ’

provided that
c—-2<a, B<o-1, (3.11)

these being the conditions for existence of the integrals that #&{se;n) is the Beta function.
It follows immediately thatr = (¢ + 8 + 3)/2 and, because of (3.11) and the finite mass
requirement oty > 2, the regions of existence of gelating solutions noted above, namely

a+pB>1 -1l<a-—B<l, (3.12)

(3.10)
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Figure 8. Plot of logtc (¢) against logj, showing the large time behaviour fer= g = 0-8; values of are as in
Figure 5.

are immediately identified; these conditions also ensure Matnd My are bounded, as
required. We arrive at

J(t) =27 K1) /(@ — B+ V(B — a + 1) cos(m (a — B)/2). (3.13)

Such results generalise those of [11] and [14] in whick: 8 is considered. It follows from
(3.8) thatK (r) ~ Ko/t ast — oo for some constanK, and that the required separable
solution has

fi~ Koj @32 as j — too. (3.14)

A numerical example showing the approach to a separable solution is given in Figure 8;
here the slope- 2.3 in the relevant regime, the agreement with (3.14) being excellent.

(i) Non-gelating regimeq + 8 < 1, withe, 8 > 0.

The solution (3.8) does not conserve mass, so it cannot be uniformly valid in the nongelating
case. It does, however, provide the asymptotic behaviour in the inner rggio@ (1). Before
proceeding with the outer solution, it will prove helpful to the matching that we note an exact
solution to the continuum limit

ac

1 x/2
oy = —/ O DD (x — 9P + Y (x — y)¥lex — v, 1)
t 2 Jo

—(y*x? 4+ yPx*)c(x, 1))dy — %C(x,t)/ O*x? + yPx¥)e(y, 1) dy, (3.15)
x/2

namely the separable solution

c(x, 1) = 2aBx~" P /(o + BYL — (@ + B)B(Ll — o, 1 — B)1; (3.16)
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Self-similar behaviour in the coagulation equationg3

this solution exists itr + 8 < 1, corresponding to the nongelating regime, provided > O.
The outer solution is a similarity solution of the form (3.6). The valuep @ndg are
specified by the conservation of mass constraint, i.e.

/Ooxc(x, Hde =1, (3.17)
0

which requires

p=2/1-(a+p), q=1/1A—(a+B), (3.18)

again confirming the conditiom + 8 < 1. The inner and outer solutions can be matched via
(3.16), whereby in (3.6)

g(m) ~2afn~ D /(L — (@ + B))(@+ BB(L—a,1—p) asn— 0O (3.19)
and for (3.8) we impose
fi~2aBj P /1 — (@ + )@+ p)BL—a,1—p) asj— +oo. (3.20)

We note that the far-field behaviour ¢f differs from that in the gelating regime (see (3.14)).

4. The constant-monomer case

4.1. STEADY-STATE SOLUTION

Ast — oo with j = O(1) the concentrations;(¢) tend to a nonzero steady stage, Writing
g, = j?d;, we observe that this satisfies

1 . > .
dy =1, > ;(k’/ +(—k))ddj—x = d,; ;(]y +kV)dy, j=2 4.1)

wherey = a — 8, and|y| < 1is required for a solution to exist. This can be solved explicitly
whena = B, for which

j—1 00
Y didi=2d; Y di. j=2 (4.2)
k=1 k=1

By analysing the generating functidn(z) = Y ;- ; di €%, we see that
D?*(z) — 2D(0)D(z) + 2€*D(0) = 0, (4.3)

implying thatD(0) = 2 andD(z) = 2(1+ +/1 — e7%). We require thaD — 0 asz — oo, SO
the negative root must be taken, giving

D(z) =2(1—1—e>). (4.4)
Expanding the square root, this yields
227"

ey 45
8 = G222 — 1) (4.5)
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It can be confirmed numerically that general time-dependent solutions to the constant-monomer
case approach this steady state solution at large times. Thejléirge of (4.5) yields

g~ j_(‘H%)/ﬁ as j — +oo (4.6)
consistent with previous studies of gelating systems [11, 14].
4.2. ASYMPTOTIC SOLUTIONS

The steady-state solution is approached uniformly-as oo in the gelating regime+8 > 1,
a — B < 1, with (cf. (3.14)

g~ Klj_(“+ﬁ+3)/2 as j — +oo, 4.7)

for some constank’; which is depends only op; for « = B we have (4.5)—(4.6). In (3.13)
we thus haveX (1) — K1 ast — oo.

In the nongelating regime we again seek a similarity solution of the form (3.6) to describe
the outer solution. The second relationship betwgeand ¢ obviously cannot be derived
by conservation of mass in this case, but follows from matching into the inner (steady state)
solution which holds forj = 0(1). We note that the solution to (4.1) depends onlygrso
the far-field behaviour of the steady state is necessarily given by (4.7) in both gelating and
nongelating regimes. The expression (4.7) implies finite massfop > 1 and infinite mass
fora + B < 1, clearly indicating the need for an outer solution in the non-gelating case.
Matching with (4.7) requires that

g(n) ~ Kyn @372 asy — 0F (4.8)
and that
p=q@+pB+3)/2 (4.9)
which gives
3 2
_ethT (4.10)

PR wrh T

again confirming the requirement @f+ 8 < 1.
4.3. NUMERICAL RESULTS

The numerical results for this case are again obtained from (3.1) $o2. They can be split

into the same categories af+ 8 < 1 (no gelation)x + 8 > 1, «, B > 1 (finite-time
gelation) andx — 8 < 1 with o« or 8 > 1 (instantaneous gelation). The complete gelation
regime, where no solution exists, is also present, in this case almost all the mass in numerical
solutions to the truncated system being in the form of monomers or ‘gel’. Numerical results
are given below forv = B in the two main cases < 3 and: < a.

4.3.1. Results forr < 3

It can be seen in Figure 9 (as in Figure 4), that there is no build-up of mass for larger particles
and the system does not gelate; the approach to the steady stgte=fo© (1) (the inner
region) is also shown. Figure 10 shows (og®*+3/1-2) plotted against logj/1%/1-2),
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Figure 9. Plot of logc; versus logj at times fromr = 0-1tor = 2.0, in steps of @, for the casex = 0-4 with
constant monomer concentration.
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Figure 10. Plot of log(r(2*+3)/(1=20)¢ .y against logj/r?1=2%)) for « = 0.4 showing approach to the
large-time behaviour, the times shown being from 0-2 tor = 2.0, in steps of .

also fora = 0-4, with time increasing from right to left; these variables are chosen in view
of the similarity exponents (4.10) (witlh = 8) and the approach of the solution in the outer
region to the postulated similarity solution is clearly illustrated. The relevant part of the profile
approaches a straight line with a gradient of approximately8, in fair agreement with (4.8).
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Figure 11. Plot of logc; versus logj at times from¢ = 0-1 to t = 2.0, in steps of @, for the caser = 0-8 with
constant monomer concentration.
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Figure 12. The profiles from Figure 11 at times= 1.9 and t= 2.0 together with the steady-state solution. The
steady-state solution is the lowest curve at large cluster size; the other two curves lie almost on top one another.

4.3.2. Results fog <

In this case the build up of mass to the right-hand side in Figure 11 indicates that the system
gelates. The steady state solution (4.5) has been included in Figure 12 to show that it is ap-
proached uniformly for large time in this regime; the disagreement for lagygéses because

the numerical approach truncates the system at clusters of size 200, where mass accumulates.
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5. Discussion

We start by noting some features of the special cases 8 = 0, = 1 with 8 = 0 and

a = B = 1discussed in Section 2. These are the most widely studied values because they are
solvable via a generating function, for example (we further discuss their integrability below),
but the results they give can be somewhat misleading with respect to the general case of
(2.3)—(2.4). This is implicit in Figure 3, from which their special status in(dae3) plane is
apparent. Summarising we conclude that the large-time behaviour is instructive in this regard.

() « = B = 0. In the constant mass case, (2.8) is of the form (3.6) with (3.18), but
(3.19) is inapplicable and no inner region is present. However, in the constant-monomer case,
with inner solution (A7) and outer solution (Al11), the asymptotic structure is of the general
nongelating form outlined in Section 4.2.

(i) « = 1, B = 0. This case is particularly significant because, as shown by Figure 3, it
lies at the intersection of all of the different regimes. The large-time limit of the constant-mass
case has outer solution (2.15), which is a similarity solution of the continuum limit ((3.7) with
A = 1) and can be regarded as a limit case of (3.6) with (3.18),as — oc. That such a
limit arises in this critical case is to be expected. The inner solution (2.14) is separable, but
is of a quite different form from (3.8), decaying much more rapidly. The constant-monomer
case is rather complicated, the most important results probably being (2.40), which shows
that the total mass increases exponentially fast, and (B12), which shows how extremely small
concentrations of extremely large clusters form. Siace 1, 8 = 0 lies on the boundary
of, but not within, the ‘no solution’ regime, these large-time results provide clues as to what
can be expected to happen in complete gelation cases, hamely that for constant mass all the
material is transferred into the geif(the exponential decay in (2.14)), while with constant-
monomer concentration the ‘solution’ is given by= 1, ¢; = 0 for j > 2, with an infinite
gel (cf. (B15), from which it follows thatc; o 1/M{*l, which is exponentially small for
j = 2). Some insight into the dependencewand g can be given as follows. Whenand
B are both large, clusters of large size combine much more rapidly with each other than they
do with small ones. There is thus a tendency for large clusters to combine (which they do
faster and faster as they become larger) to form a gel, without the small clusters initially being
substantially depleted. By contrast, wheiis large buts is not, large clusters combine with
small ones not much more slowly than they do with other large ones, giving the possibility of
all the mass gelating at once.

(i) « = B = 1. For the constant mass case the large-time behaviour is of the separable
form (2.28) and for constant monomer a steady state is approached, both in keeping with the
general behaviour of gelating cases.

These three special cases can be regarded as integrable, having an infinite number of con-
servation laws for example. We give the details only in the simplest of ¢ase3 = 0 with
constant mass, for which (2.5) witly = 2/(z + 2) implies that(1—2/(t + 2)C(z, 1))/ (t + 2)
is independent of. Insertion of (2.2) or (A1) then leads to a recursive system of conservation
laws involving the concentrations or the moments. For valuesarid other than the three
cases given above, the coupling of the moment equations implies that they cannot be solved
sequentially. In particular, it is not possible in general to determpeand M in (1.3)—(1.4)

a priori. Such comments provide further indications of the very special nature of the cases
discussed in Section 2; as is typical, solving only the integrable versions of the system may
fail to give a good indication of the generic behaviour.
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The final feature of the special cases that we note is the following. Introducing the trans-
formations

a=8=0:
t t t'
cj = exp(—/ Mo(t) dt’) ¢, f:/ exp(—/ Moy(t") dt”) dr’,
0 0 0
a=1 p=0;
1 t
¢j = exp(—E/ (jMo(t') + Ml(t/))d[/> ¢ (5.1)
0
t 1 t
f= / exp ——/ Myt dt” | dr’,
0 2 Jo
a=8=1

t
cj:exp(—j/O Ml(t’)dt’)éj, f=t,

(we note that these transformations are nonlocal becdy$e depends on the unknowng),
we obtain

1 A
L= 23 (=K G = B 62

which has the further symmetry

Go=eYe;, = K=k =1, (5.3)
wherea is a constant, so that similarity reductions include

¢;()) = exp(rji) ;. (5.4)

¢j(1) = exp((hj — D logi)g;. (5.5)

In this framework the solutions of Section 2.1 are classical similarity reductions of the form
(5.5) witha = 1. Thus, for (2.7) we have

_ 4 ! 56
AT vz YT '

for (2.13)
ci=exp(—jl—e"?—1/2)¢;, i=201-€"?, g =(/27Y, (5.7)
and for (2.27)

exp(—jrc; t <1,

Cj = { . N (58)
exp(—j(L+logr)c; t>1,

>
Il
>
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with
g =j"°/G =D (5.9)

This last case is particularly noteworthy since the solution takes the same similarity form both
before and after gelation, which is why the post-gelation solution is exactly separable when
(1.10) holds. Moreover, given (5.1), that (5.9) holds witlk: 1 (which is dictated by the initial
conditions) and the fact that the solution decayg as +oo exponentially pre-gelation and
algebraically post-gelation, we can immediately deduce, without using (5.8), the results

t
t,=1, —/0 My(tydt' +logr+1=0, > 1 (5.10)

This similarity betweeng; in (5.7) and (5.9) is not coincidental. Writingf( [5]) ¢, =
C;/j, i = T/2maps (5.2) fronw = g = 1toa = 1, g = 0. There is thus an equivalence
transformation between two of the integrable cases.

We are now in a position to summarise the various types of self-similar solution which
arise. The inner solutions (3.8) and (4.5) are classical reductions of (1.3)—(1.4); the exact
solutions (2.7), (2.13) and (2.27) can be viewed as nonlocal reductions; the outer solutions
given by (3.18) and (4.10) are classical reductions of the continuum approximation (3.15);
and (B12), for example, is an asymptotically self-consistent balance in (3.15), rather than
being an exact similarity reduction. The exponential of an exponential dependence of (B12) is
noteworthy. The problems discussed here are thus instructive in illustrating the role of a wide
variety of types of self-similarity and asymptotic self-similarity in a discrete problem. A num-
ber of different continuum limits also occur; the most significant of these is the conventional
onei.e. (3.2), but (B20) and (B27) (which is of Fokker—Planck type) also arises as continuum
approximations. A continuous formulation (C3)—(C4) also results from applying generating
function (or equivalently-transform) methods, as described in Appendix C.

We can summarise our asymptotics by noting the behaviour of the following quantities as
t — oQ.

(a) Constant mass:

(i) Gelating regime Mg o< 1/t, M1 = 1 — gel sizex 1/t
(i) Nongelating regime Mo o< 1/t, My =1

(b) Constant monomer:

(i) Gelating regime My, M;  t°, gel sizex ¢
(i) Nongelating regime Mg o< 19, My o t.

In the nongelating regimel/, is dominated in both cases by the inner region &ndby the
outer. Some of these expressions are violated in the borderline cases suchlasg = 0.

While we have concentrated here on specific initial conditions, we expect our asymptotic
results to provide the large-time (intermediate asymptotic) behaviour for large classes of initial
data. Two important exceptions to this should be noted, however, in the constant-mass case.
Firstly, with regard to borderline cases it is implicit from the fact thaémains bounded as
t — oo in (5.6) and (5.7) that important aspects of the large-time behaviour may depend on
the initial data in these cases. o= 8 = 0, we have from (2.5) thaldy ~ 2/t ast — oo
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for arbitrary initial data and, while (2.8) will always give the form of the outer solution, the
inner solution is

cj(t)y ~t™%h; ast— oo with j = O(1), (5.11)

where#h; is almost completely arbitrary (in (2.7) we simply have = 4); the summation
term in (1.4) is negligible in this limit. Similarly, fox = 1, 8 = 0 the outer solution is in
general of the form (2.15) (though in (3.X)will be determined by the mass; we stick to the
caseM, = 1 here) but the inner will be

cj(t)y ~e"?h; ast— oo with j = O(1), (5.12)

h; again depending on the initial data. Similar comments apply in other borderline cases.
Secondly, if the initial data is made up only @fmers (withn > 2) then the clusters will

for all time each contain exact multiplesmparticles, unlike the large-time solutions derived
above. This can easily be addressed via (1.16)—(1cE7)1d]). If ¢; = C;(¢) is the solution

when (1.10) holds then

1 L .
=Cj/am*P71) if jis a multiple ofn,
n

Cj = (513)
0 otherwise
is the solution for the initial conditions
atr =0, ¢, =1/n, cj =0, Vj #n; (5.14)

the nature of the time dependence in (5.13k as oo can be used to identify + 8 = 1 as

a critical casedf. Figure 3). If all the initial clusters are of even size (say) then the large-time
behaviour will in general correspond to (5.11) with= 2; the evolution when only a very
small proportion of the clusters is initially of odd size would be of interest.

In summary, we have applied similarity methods to the coagulation equations to obtain, in
particular, new asymptotic results for both constant mass (particulardy $6B) and constant
monomer; the latter has been little studied before. Numerical solutions have been used to yield
useful complementary information and to verify the asymptotic results; we are not aware of
comparable earlier work of this type. The numerical results are expected to be accurate unless
and until gelation occurs, in which case their interpretation requires care.

We have shown similarity methods to be highly applicable in the analysis of this type of
discrete system. Possible extensions of the work are numerous. Here we note only that it
generalises rather easily to other scale invariant kernels, notably

ar; = k*PF(j/k) where F(o) = 0P F(1/0), (5.15)

and to kernels which take this form asymptotically for large cluster gizé — oo; most
cases of interest can thus readily be incorporated into the theory.

Appendix A. Large-time behaviourfora =8 =0

Al. INTRODUCTION

This appendix concerns the constant-monomer case, the generating function satisfying (2.34).
We start by noting some results for the moments.
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Since
o] Mn

Cty=)Y_ — (=", (A1)
n=0 :

it follows from (2.34) that

dM, 2
d  1+e’
n— A2)
dM, 1< n 2 (
=z — MM, ;+—— forn=2
dr Z;jl(n—j)! M T e "
Hence, in particular,
My =2log((1+€)/2)+1~2 ast— oo, (A3)
M, ~ 33 ast — oo,
Thec; can also be constructed sequentially. In particular
2
.1
Cy) = 5 1 i p— Co, (A4)
so that
o= (t+2(€ -+ 3 - 1) /2€ + 12 (A5)
implying exponential approach to steady state, with
c;— 1 ast— oo. (AB)

i

A2. ASYMPTOTIC BEHAVIOUR

Ast — oo, the asymptotic behaviour divides into two regions. In the inner regienO (1),
we have ¢f. (4.5))

2(2j)!

Cj > ——————— ast— oo, (A7)
L1225 -1

consistent with (A6).
The outer solution is most easily addressed via (2.34). Guided by (A3), we seek a solution
of the form

C(z,1) ~ +17 @), ¢ =z? (A8)

l+et
ast — oo with z = O(t?). While this is not an exact similarity reduction of (2.34), a
self-consistent dominant balanceras> oo is

df

SAEE

=1f*-2¢. (A9)
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This can be written as a separable equationffay/c, with solution

f =—2/ctanh,/¢ (A10)

since f(0) = 0; this is consistent with (A3).
It follows from (A8) that

cj~17%m), n=j/* (A11)
ast — oo with n = O(1), this being the outer expansion. From (2.3) we have that
o0 d
[ eemenan=-L. (A12)
0 d¢

The inverse transform can be written in a number of ways; here we note only the asymptotic
behaviour. We have

gn) ~1/y/mn® asn— 0, (A13)

matching with (A7), the correction term to (A13) being exponentially smaltEe /" //m n°),
consistent with the exponentially rapid approach to the steady state in the inner region. The
largen behaviour can be determined by a residue calculation, giving

—71277/4

gn) ~ nzne as n — oo, (A14)

the correction terms again being exponentially smaller.

Appendix B. Large-time behaviourfora =1, 8 =0

B1l. INTRODUCTION

We are again concerned here with the constant monomer case, in which (2.37) governs the
generating function. The large-time behaviour subdivides into a number of regions, the first
of which (the outer region) is most easily addressed via (2.37) and the remainder using (1.4),
which we write in the form

.1 .
¢j = E;kcijk—%(Mlcj-{-Mo]Cj). (B1)

We restrict ourselves to giving a fairly brief summary of the results of what turns out to be a
rather complicated asymptotic analysis.

Before proceeding with the various regions, it is helpful to note the behaviocy foir
small j and of the moments. From (B1) we have

ér =3 — 1Mico — Mocy, 62)
és =3, — IMycs — $Mocs,

etc., and in view of (2.40) it follows that
co~ 1/ My, c3~3/M? ast— oo, (B3)
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c;+1 being exponentially smaller than for j = O(1). From (A1) and (2.37) it follows that

M, 15~ for n >2 B4
@ " 2\ &g M Mok My | o> 2 .
J=

from which it can readily be deduced that

My ~ B oM’ gg4 o oo (B5)
for some constanB which we can determine by integrating (B4) foe= 2, while

M, ~ K, B"~L =D fo Muthdt' ppn-2 (B6)

for n > 3, where a recurrence relation f&r, (which contains no arbitrary constants) can
readily be obtained from (B4).

B2. THE OUTER REGION

In view of (2.40), (A1) and (B6) we seek an asymptotic solution to (2.37) of the self similar
form

C(z.0) ~ Mo(t) + e 2" f(r), ¢ =ze¥/2e4e” (B7)

ast — oo with ¢ = O(1). Thusz is exponentially small; while this is an inner region for
(2.37), we shall see that it corresponds to the outer region of (B1). In view of (2.40) and (B5),
the initial conditions onf are

f(0) = —A, f"(0) = 2B, (B8)
where

B = éexp(/ooo(Ml(t) —A€?+1) dt—2A>. (B9)
From (2.37) and (2.40) we find that to leading order

(f + 2A§)g—§ = Af (B10)

so, given (B8),

A? 4B \?
f(§)=ﬁ(1—<1+7§) ) (B11)

From this it can be shown that is of the self similar form

_4Ad/?
~ @lt/2g-4A¢

¢ g,  n=jee?e” (B12)

ast — oo with n = O(1); this governs the large time behaviour«gffor large j. Inverting
the Laplace transform in (A12) we find that
A3/2

—3/2 o—An/4B

g(m) =
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In order to match, we shall need the behaviour of (B12)—(B13) as 0", namely

¢ o A e a2 (B14)
1 2 B2 o

There are four further regions and we now work with (B1) through successively increasing
regimes forj.

B3. j = 0(1)

The dominant balance in (B1) as—> oc is (cf. (B3))

13 ,
c1 =1, S~ ;kckcjk, ji>2 (B15)

from which it can be shown that
cj~ Kj-"Jr3/ze_-"/M{7l as j — +oo, (B16)

for some constant which we can determine by iterating (B15) to largeThe next scaling
hasj = €/?p, so matching with (B16) requires

cj ~kAg¥? e fexp(é/?(logo — 1 —logA)) as o — O, (B17)
where we have used (2.40).
B4. o=0DWITHO<p < A
In view of (B17), ag — oo with ¢ = O (1) we adopt the WKBansatz

cx ~ ao(e, 1) exp€’?w (o)) (B18)
and (B1) yields

dw dw
w—Q$+A+Q:Qexp —5 ,

2—t —ap+ —ap — Q—Q (B19)

22 dag ox dw N 0 ox 2da)
=\ 350a0— —0— - —a —-2—),
20 on2 0 90 p do 1% p do

only the first two terms in the sum in (B1) contributing to this order. Writin@) = o logo —
o + Q2 (p) transforms the first of (B20) to

Q—gd—Q—i-A:exp —d—Q , (B20)
do do

which is of Clairaut’s form, and the solution required to match with (B17) is simply

w(0) = o(logo —1—log A). (B21)
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The second of (B20) now becomes

8a0 8610 3A A— o
224+ (A—g— == +"—=)ao B22
o7 +(A-0) 90 <2 + 1) (B22)

which has in view of (B17), the solution
ap = k(A — 0)p¥%ef/A /4, (B23)

This vanishes at = A, which is a stationary point of (B21). These observations can be used
to identify the next scaling as

o=A+o/e" (B24)
where from (B21) and (B23) we require in order to match that
cj ~k(—0)AY? e exp(—A€/? +0%/24) aso — —oo. (B25)

We note thatp ~ A corresponds to the point at which (B16) and (B21) are miniro&l (
optimal truncation). In terms af (z, t), this asymptotic structure is hidden beyond all orders
of the large-time expansion.

B5. 0 = O(1)
If we write

cj ~exp(—A€?)¢(o, 1), (B26)
then (B1) yields the leading-order balance

2% 1 % 1A82_¢

ot 2790 27542

and because of (B25) we have

+ ¢, (B27)

¢ =€ (o). (B28)
Since we requiréd — 0 aso — 400 in order to match forward, it follows from (B25) that
Do) = KAZe (1 - \/za e"z/z"erfc(o/«/ﬂ)) . (B29)
21 2A
Hence
O (o) ~ kAe/V2r6? aso — +oo. (B30)

B6. o=0Q)WITHpo > A

This is the final region and (B18) and (B20) are again valid, but to match with (B30) we
require the singular solution to (B20), givirge) = —A and

8a0
2— —ap =0, B31
ar 0 (B31)
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so that
ap = €/2W(p). (B32)

It does not seem possible to calculate the functig@) explicitly and, when general initial
conditions are considered, it will depend on the initial data. However, in view of (B30) and
(B14) we have

W(p) ~kA3e/V2n (o — A)? aso— AT,

B33
W(p) ~ A¥?/2(n Bo®>)Y? as o — +o0, (833)

thet dependence being consistent in the various regions; this completes the matching.

C. The generating-function approach

It is worthwhile to note briefly the application of the generating function (2.2) to the general
class (1.3)—(1.4)cf. [5, 11]). Introducing

D,z 1) = Y kPei(t) exp(—kz), (C1)
k=1
so that
M,(t) = @,(0, 1) (C2)
andC(z, t) = ®o(z, t), we have
dC
< @D = 5 (Pa(z. )Pz, 1) — Mo ()Dp(z. 1) — Mp(1) P (2, 1)) . (C3)

The relationship between the quantities appearing in (C3) can be written in a number of ways,
including

1 o0
C(z,t) = @ / 70, (z + 7, 1) d
0

1 (e.¢]
— 1B—1 1 /.
= —— P Pg(z + 2, 1) d; C4
F(ﬂ)/o ’ 4
whenp is an integer we have

arc

— (—1) ———
®p(z, 1) = (=D 7=z ). (C5)

In view of (C2), the Equation (C3) is of a nonlocal type similar to that discussed in [16];
indeed, in the special case= 8 = 2, for instance, we have

av 0 dv
-~ _ 2 —v)— |, C6
or 9z ((U v)8z> (0
wherev(z, t) = 3°C/3z% andu,(t) = v(0, t) = M>(t). Equation (C6) is to be solved subject

to
atZZO v:Us(t)a

Cc7
as z — 400 v~c(t) e, €7
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wherev, andc; are both unknown but are related via

dCl

dr
The formulation (C6)—(C7) is of some interest: in particular, (C6) is of backward diffusion
type because < v, for z > 0.

Returning to (C3)—(C4), we note that they could be regarded as an alternative continuum
formulation of (1.3)—(1.4). In addition to the symmetries

= —USC]_. (C8)

C*:MC’ CI);:MCI)p’ M;:MM , Z*:Z’ t*:t/M’

C*=C, o*=9o M:=M * = * = (C9)
- ’ P P P = )z Z =2, t—[+t0,
inherited from (1.12)—(1.13), it has the further rescaling invariant

C*=0C, CID*;) =P, M; =v'M,, F=z/v, t'= t/v‘”ﬁ. (C10)
The continuum approximation to (2.2) is the Laplace transformation

o
C(z,t) = / c(x,t) e dx (C11)
0

and (C10) means that the symmetry (3.4) of the continuous approximation (3.15) is in fact
shared by (C3)—(C4), which are an exact representation of the original system; (C10) is
equivalent to the combination of (3.3) and (3.4) with= 1/v. Nevertheless, the continuous
symmetry (C10) does not apply to the discrete form (1.3)—(1.4); in particular, it requires setting
k* = vk which is not in general an integer. In the special case in whiehn is an integer we

do, however, recover the discrete symmetry (1.14). Such comments may have fairly general
implications for the application of symmetry methods to discrete systems.
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